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The application of a dissipative Galerkin scheme to the numerical solution of the 
Korteweg de Vries (KdV) and Regularised Long Wave (RLW) equations, is investigated. 
The accuracy and stability of the proposed schemes is derived using a localised Fourier 
analysis. With cubic splines as basis functions, the errors in the numerical solutions of the 
KdV equation for different mesh-sizes and different amounts of dissipation is determined. 
It is shown that the Gale&in scheme for the RLW equation gives rise to much smaller 
errors (for a given mesh-size), and allows larger steps to be taken for the integrations in 
time (for a specified error tolerance). Also, the interaction of two solitons is compared for 
the KdV and RLW equations, and several differences in their behaviour are found. 

1, INTRODUCTION 

The present study is concerned with the numerical solution, using Galerkin methods, 
of two equations which represent approximations to a larger class of physical problems 
in which non-linear waves are present. These are the Korteweg de Vries (KdV) 
equation 

K[u] = 2.Q + ml, + EU,,, = 0, U-1) 

and the Regularised Long Wave (RLW) equation 

R[u] = zf$ + za.4, - szt,,* = 0, (1.2) 

in which E and 6 are “small” positive constants, and the corresponding terms represent 
the modelling of dispersive behaviour. 

Since its formulation by Korteweg and de Vries [S], a wide class of exact solutions 
to equation (1.1) has been found, notably in recent times using the Inverse Scattering 
Method (Gardner et al. [S]): this method generates the well-known N-soliton solutions 
possessing the property that amplitudes and velocities, as well as the shapes, of 
individual solitons are preserved in a (non-linear) interaction. Numerical studies of 
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NON-LINEAR DISPERSIVE WAVES 429 

this equation using Finite Difference methods have been carried out, notably by 
Greig [6]. 

By contrast, for the RLW equation (1.2), originally proposed by Peregrine [9], no 
wide class of exact solutions is yet known. The numerical experiments of Eilbeck and 
McGuire [4] seem to indicate that the behaviour of soliton solutions is similar to the 
KdV case; indeed, as may easily be shown, the equations (1.1) and (1.2) possess the 
common single-soliton solution 

where 

u(x, t) = 3 c sech2(kx - wt + d), (1.3) 

k = 1/2(c/+j2; w = kc, 

and c and dare parameters, provided that the relation 

(1.4) 

6 = E/C (1.5) 

is satisfied. Thus, although it is not yet known whether there are multiple-soliton 
solutions to the RLW equation, the existence of a common one-soliton solution 
nevertheless provides the motivation for examining the numerical solutions with 
N solitons (we consider the case of N = 2 only). 

In the present study, we extend previous numerical work on equations (1.1) and (1.2) 
(where Finite Differences were used), by proposing a generalised (ordinary or dissipa- 
tive) Galerkin scheme, based on the one given by Wahlbin [12] for the KdV equation, 
and applying it to one- and two-soliton initial conditions. The linearised error and 
stability analysis is given in Section 2, and the numerical computation procedure in 
Section 3. In Section 4, we examine the behaviour of the one-soliton solutions for 
different (uniform) mesh-sizes and different amounts of dissipation in the KdV 
scheme, and compare it with the solutions of the RLW equation; furthermore, we 
compare the behaviour of the two-soliton solutions of both the KdV and RLW 
equations. 

2. ACCURACY AND STABILITY ANALYSIS 

Let SU denote the space of smoothest splines, defined piecewise on intervals of 
length h (= mesh size) as polynomials of order p (degree p - I), having compact 
support on an interval of length ph. These spline functions can be constructed in the 
usual way as a (1-1 - 1)-fold convolution (Schoenberg [IO]): Let 

~1W) = 1, -l/2 < X < l/2, 

= 0, otherwise. 
(2.1) 

Then 

(CL - 1 times). (2.2) 
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(f * dW) = jm f(Y) i?(X - y> dY --m 
Using (2.1), we see that, inductively, 

The basis functions &(x) of S” are then defined by 

(2.3) 

4k4 = Mu ($ - I) (I E 2). (2.5) 

We propose the following generalised Galerkin methods for equations (1 .l) and 
(1.2): if x E SW, and U denotes the Galerkin solution, then 

where 

KdV: owls x + 4~~3Xrm~ = 0, (2.6) 

RLW: @wl, x + 4 @‘%xz) = 0, (2.7) 

(5 d = j-=)-W g(x) dx (2.8) 

and q is an arbitrary parameter determining the amount of dissipation in the scheme 
(q = 0 corresponds to an unmodified (non-dissipative) scheme). 

In order to undertake a Fourier analysis of the accuracy and stability of (2.6) and 
(2.7) we set u = c = constant in the quadratic term uu, in the equations (1.1) and 
(1.2). Next, rescale x, t and u to remove the constants E and 6. We obtain the linearised 
forms 

KdV: 6% + cucz + um,, x + qh3xmJ = 0; (2.9) 

RLW: Cut + cuz - Umt , x + &xx) = 0. (2.10) 

The Galerkin solution may be expressed as 

Substituting into (2.9) and (2.10), setting x = (bz , we obtain the Gale&in method 
in the forms 

(2.12) 
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+ C~j(OK@, 91) + qh(&‘, &‘>] = 0. (2.13) 

The values of the integrals (#I?‘, #“‘) clearly depend only on the difference j - Z, 
as follows from (2.5); hence (2.12) and (2.13) are of the form of (discrete) convolutions. 
Now define 

qe, t) = 1 cQ(t) e-ize; 
7 

g,.dQ = --i C <&‘, +z) epize; 

(2.14) 

The various powers of h appearing in the definitions of g,,, have been chosen to 
render these quantities independent of h. Multiplying (2.12) and (2.13) by e-ize, 
summing over 1, and using the multiplicative property of convolutions: 

where 

we obtain 

(2.15) 

(2.16) 

KdV : -$- (e, Okp.o - iqg,d 

+ h-l&(& t)ku.l - ih-%,, 3 - qcg,,, + qh-2gu.,] = 0; (2.17) 

RLW: - i%,,l + h-zgu.3 - iWk,,l 

+ ch-w, Ok.1 + q&.,1 = 0. (2.18) 
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Define 

Is,(& h) = _ aL.1 - ~mL,3 - Pxu*4 + ~ML, ; 

gu,o - ia,, 

I7,(S, h) = -c 
ih + qg,., 

g 
U,O - ia,, + h-2gu,2 - W2gw.3 * 

(2.19) 

(2.20) 

We may, therefore, solve the ordinary differential equations (2.17) and (2.18) to give 

L(B, t) = exp [GIf(B, h)] dz(0, 0), (2.21) 

where 17 = 17, or 17, . Writing exp [ ] in terms of its Fourier components 

ev [$ II@?, h)] = C c&(t, h) eAe, (2.22) 
1 

we may express the final solution, at the mesh-points, in the form (Wahlbin [12]) 

(2.23) 

wheref,(x) = U(X, 0) is the initial condition. Thus, the behaviour of the solution is 
determined by the quantity exp [ ] in (2.21). Recall the following definitions: 

The finite difference operators (2.12) and (2.13) are 

(i) accurate of order r if 

KdV: IIK(O, h) = i&--c + h-W) + 0(&+3); 
as e -+ 0; (2.24) 

RLW: II,@, h) = - 
id 

1 + h-2()2 + o(p+3>, 

(ii) dissipative of order 2s, if there exists a y > 0 such that 

ReW(e, 4) G +28, I e 1 G T, (2.25) 

independently of h. 

In order to determine the accuracy and dissipativity of the schemes (2.9) and (2. IO), 
we require the result (e.g., Thomte and Wendroff [ll]): 

T <&‘, &‘) emize = i”-“C (2571 + ey+B(&2d + @)“, 
1 

(2.26) 
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where 

We may express the g,,, in the following alternative forms, to be used later. 

where, for 8 ---f 0, 

R II,0 = o(ey, 

= o(e2u+l), 

(ii) g,.o(e) = (2 sin iep Q,(0), 

QJe) = c (2TZ + e)-(2u-0). 

(5 even, 

o odd. 
(2.29) 

(2.30) 

(2.31) 

We may rewrite (2.19) and (2.20) in the forms 

flde, A) = --4 [ -4QoQa - QIQJ + h-2(Q,Q, - Qs2) 
Qo2 + q2Qs2 1 

+i[ -c(gU,OgUsl + q2gu,4gu,3) + h-2(gu,0 + 42gu,6) gu,3 
co + q2e,3 1 , (2 32) 

(QoQ, - Q12> + h-2(Q22 - QlQd a45 h) = -qc [ ( Q, + h-2Q2)2 + q2(Q1 + h-2Q,)2 1 
+ ic [ (g,.o + q28,,*) g,,l ’ h-2(g~,l + q28,,3) gL1.2 hL.cl + ~-2&,2>2 + 42(&,l + h-2gu,3)2 I . (2.33) 

The accuracy of the schemes (2.9) and (2.10) may be found by substituting (2.28) 
and (2.29) into the imaginary parts of (2.32) and (2.33): 

WL) = 4 (C - $1 + ~p+~); 

ImWd = - 1 ;Bsyh2 + 0(82u+l). 

Hence, by (2.24) both schemes have accuracy of order 2(~ - l), independently of q. 
Next, in order to find the dissipativity, we need to prove some preliminary results 

for the QO, defined in (2.31) (Wahlbin [12] proves a special case of the following). 
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Since Re(17) is quadratic in Q,, , we need consider only the range 0 < 0 < 7~ in (2.25). 
Then, since 2~ - 0 3 6’ > 0, we have from (2.31) (since (T < 2~) 

Q@) = f ((e + 2?Tl)+ + (e - 27T - 27+-2u} 3 0. 
LO 

Also, for 0 -=c 0 e n, 

m (2rrz - ep-0 + t-i)0 (2Tz + ey-0 Qo(e) = e-(2-) + c 
((2+ - ey-0 . (2.34) 

Z=l 
If u is even, then the summation in (2.34) is positive; if u is odd, it may be written as 
-r,(e), where rJ0) 3 0, so that 

e-e-4 3 Qo(e) = e--u) - ro(@ 3 0 (u odd). (2.35) 

If (T is even, then there exist positive constants clU, czU such that 

e-(2-) + c1o 2 Qo(e) 2 ew-0) + c20 (u even). (2.36) 

Now consider the expressions QrQ, - QtQU , where r and s are even, t and u are 
odd, and r + s = t + U, which occur in the real parts of (2.32) and (2.33). From 
(2.35) and (2.36) we have 

(e-vz~-r) + cl~~(e-(2~-s) + cls) _ (e-c24 - r&e-@-u) - r,) 

3 QrQs _ QtQu >, (e-@-U f c~)(e-(2p-s) + C2*) - e--(4u-t-u). 

Hence, for positive Er , Z2 , and for S = min(r, s, t, u}, 

q-@-f) > QrQs - QtQu > z2e-(2e (2.37) 

This shows that Q,.Qs - QtQu is positive. We may conclude, from the real parts in 
(2.32) and (2.33), that, for q > 0: 

(i) The KdV scheme (2.6) or (2.9) is conditionally stable, and dissipative of 
order 2~, for c > 0; and unconditionally stable for c < 0. In the former case, we may 
make the scheme stable by choosing the value of h sufficiently small. 

(ii) The RLW scheme (2.7) or (2.10) is stable, and dissipative of order 2~, for 
all h and for c > 0; but unstable for c < 0. 

Finally, we note that optimal L, error bounds have been proved for the KdV 
scheme (2.6) (Wahlbin [12]). Also, optimal L, , HI and L, error bounds exist for the 
non-dissipative RLW scheme (2.10) with q = 0, in which a second-order accurate 
time-discretisation is used (Wahlbin [ 131). 
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3. NUMERICAL COMPUTATIONS 

In this section, we shall give details of the computational procedure used for 
implementing the schemes 

KdV: NJ, + UU, + cum, , x + qeh3xzm) = 0 (e > 0); (3.1) 

RLW: (U, + UU, - SU,,, , x + qW2hxz) = 0 (6 > 01, (3.2) 

where, in Section 4, the results with q = 0 (non-dissipative scheme) only are presented 
for the RLW equation. 

The interval I, = [0, 21 of the x-axis is uniformly partitioned into N sub-intervals, 
each of which has length h = 2/N. The basis functions Qi E P, defined by (2.9, and 
which have support in the interval 1,) are those with -p/u/2 < i < N + p/2. We shah 
be dealing with solutions which have their zeroth, first and second derivatives equal 
to zero on the boundaries: x = 0,2 (the solition solutions possess this property). We 
shall construct special “boundary functions,” which do not belong to S”, and possess 
the property that the first two derivatives vanish at the boundaries. The numerical 
computations were carried out for p = 4 (i.e., the cubic splines); and, for this case, 
one may choose two such boundary functions, to replace & and c#~-~ , together with 
the set (A, , 43 ,..., $N-31, in order to provide a basis B in S” for the solution U. Note 
that #&) has support on the interval [(j - p/2)h, (j + p/2)h]. 

If we augment the space P by these special boundary functions, and denote the 
set of functions B by (ul , v2 ,..., vNV1} (vi = & , 2 G i < N - 2; v1 , uNel being the 
boundary functions), then the solution U may be expressed as 

N-l 

ww = c %(G %(X) (3.3) 
j=l 

3.1. Calculation of the Galerkin Constants 

Define the following set of (constant) quantities: 

Aij = h-l(ui , z$; 

Bijk = (v. viva’); z 7 
Cii = h2(& $)); 

Dijk = h3(vp), v+$‘); 

Eii = h5(yp), vj3)); 

Fij x h($), 0:)); 

Gijk = h(vl’), zy~)); 

Hij = (v,(l), vi), 

(3.4) 

5s1/30/3-9 
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where TV Z 4. Thus, A, B ,..., H are independent of h. In terms of these definitions, 
substitution of (3.3) into (3.1) and (3.2) yields the following sets of ordinary differen- 
tial equations for 01~ (summation over the repeated indices from 1 to N - 1 is implied): 

KdV: (Aij + qEC’ij) 2 + h-l(Bijk + qEDiik) ajak 

- Eh-3(Cij - qEEij) 01j = 0; (3.5) 

RLW: [Aij + 6h-‘Fij + q8l”(Hij - Sh-‘Cij)] 2 

+ h-l[Bijk + q6l/‘Gijk] ajak = 0. (3.6) 

Now, if none of i, j, or k is 1 or (N - l), then we may use the translation property of 
the &‘s, as defined by equation (2.5), to suppress the index i of each of the symbols 
A ,..., H in (3.4), since these quantities are functions only of (j - i) and (k - i). Thus 
retaining the same symbols and reducing the number of indices by one, we define 
4 = &+B B,, = &i+,w+v 3 etc., where I /3 1, [ y 1, I /3 - y I < p - 1 (since values 
outside these ranges are zero). Thus, we may write (3.5) and (3.6) in the equivalent 
forms: 

KdV: (A, + W,) $ (a(+~) + h-Y&y + M’d ai+Bai+y 

- ch-3(C, - qd,,) ai+B = 0; (3.7) 

RLW: [A, + 6h-2Fo + qN2(H, - 6h-2C,)] ; (ai+& 

+ h-l[BB, + q@‘2GBy1 ai+oai+v = 0, (3.8) 

where summation from -(p - 1) to (p - 1) is implied by the repeated indices p and 
y, subject to the restriction 2 < i + p, i + y < N - 2. In order to avoid the compli- 
cation of the boundary functions, we may extend the allowed range 1 < i + 8, 
i + y < N - 1, if we replace a1 and z+,,-~ by & and I&-~ , respectively (thus preserving 
the translation property), and apply “boundary corrections” as follows. Define 
starred quantities to be those calculated using the “incorrect” boundary functions & 
and &--]. , and unstarred quantities those calculated using the “correct” ones u1 and 
uNwl , whenever one of the indices i, j or k in (3.4) has the value 1 or (N - 1). The 
corrections to be applied in (3.7) and (3.8) will then be of the forms 

KdV : aijk = (Bijk - B&) + qE(Dijk - D&c); 

rlij = (Cij - C~) - qE(Eij - Ed); (3.9) 

RLW: Sijk = (Bijk - BGk) + q61i2(Gijk - Gi*jk), (3.10) 

whenever one or more of the indices has value 1 or (N - 1). Note that in the actual 
coding, the matrix (P, say) of coefficients multiplying da/dt in (3.5) or (3.6) was 
calculated explicitly and stored (in band mode), since the o.d.e. solver requires an 
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LU factorization of the matrix in order to solve a system of the form Pda/dt + g = 0, 
as in (3.5) and (3.6). Hence, boundary corrections were applied only in the subroutine 
which computes the vector g = g(a). 

The computations were carried out in the case t.~ = 4, for which definition (2.1) or 
(2.3) yields the following cubic splines (Schoenberg [IO]): 

Then, 

Ml(Y) = 09 Y < -2; 

= KY + v, -2<y<--1; 

= i[(y + 2)3 - 4(Y + 1131, --I <y<o; 
= Q[(- y + 2)3 - 4(-Y + 1131, O<y<l; 

(3.11) 

= g--Y + 213, l<y<2; 

Z-Z 0, 2 <y. 

&(x) = 444 ($ - i) 

= tit(x), for 2 < i < N - 2. 

The boundary functions ZJ~ , z),.,-~ must satisfy 

u (0) 1 = VI’)(O) = J2)(0) = 0. 1 > 2’&I(2) = z&(2) = V&(2) = 0; 

and, furthermore, match the zeroth, first and second derivatives at the nodes: x = h 
and x = (N - 1)/z, respectively. This constraints these functions to be (unique) 
quintic polynomials in the intervals [0, h] and [(N - l)h, Nh]. Thus let 

WY) = 0, Y < --I 

Then, 

= (y + 1)” [3(Y + 1)” - %Y + 1) + 1311, -1 <y\(o; 

= &K-Y + 2)3 - 4(-Y + 1131, 0 < y < I; (3.12) 

= &(--)I + 2)3, l<yd2; 

= 0, 2 <y. 

q(x) = @ (5 - 1); L+.-~(x) = @ (- + + (N - 1)). (3.13) 

The solution was evolved in time by solving the systems of ordinary differential equa- 
tions (3.7) using the IMSL library (1975) routine DREBS with the order of the method 
set equal to 2. An error tolerance for the integration was set to 2 x 10-2. 

Note: The computation of the integrals in (3.4) involving piecewise polynomials 
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(3.11) and (3.12) and their derivatives, is a tedious, but straightforward process, 
which could well be automated. Since the polynomials are defined piecewise on unit 
intervals of (x/h), the integrals can be reduced to the form: 

I o1 bo + QY + ..* + a,y”l dy = i a,/@ + 1) 
k=O 

Thus, in general, we would require a subroutine to multiply together two or three 
polynomials of degree <(p - 1) by storing the coefficients of the polynomials in 
arrays, and implementing an algorithm for “long multiplication” on these coefficients, 
to yields a, ,..., a, above. 

3.2. Computation of U(0) 

When solving the systems (3.1) or (3.2) of ordinary, first-order differential equations 
in time, we require a method for determining the initial values ai( 1 < j < N - 1. 
Thus, if we substitute the form (3.3) with t = 0 into the following expression: 

KdV: El = /I 1 do> vj(.> - fo$ = (c do) cj - fo , c a#) uk - fo) (3.14) 
j j k 

and set atl/aai = 0, then we obtain the following equation (using definitions (3.4)), 
from which to compute a(0): 

c &%(O) = (fo 9 Wk (3.15) 

(3.15) represents the orthogonal projection off0 into P. In order to evaluate the 
integrals in (3.15) we employed the integration routine DCADRE from the IMSL 
library (IMSL 1975) using relative and absolute error tolerances equal to 10-4. 

4. DISCUSSION OF THE NUMERICAL RESULTS 

In this section we present plots of the l- and 2-soliton solutions for both the KdV 
and RLW equations. The KdV equation is more extensively treated: the dissipation 
parameter q was chosen to assume several values, in order to investigate the effect of 
introducing different amounts of dissipation into the numerical scheme, and its 
effects on the propagation, with time, of the errors in the solution. The results of the 
RLW equation with q = 0 and N = 40 are so good in comparison with the KdV 
equation that we have not included other RLW results here. 
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4.1. Single-Soliton Solutions 

The initial function for the I-soliton solution was computed from (cf eq. (1.3)) 

fo(x) = 3c sech2 (kx + d) (4.1) 

in which k = $(c/E)~/~ = +(l/S)l/2; d = constant. 
The following values of the constants were used 

c = 0.3; E = 4.84(10-3; d = -k. (4.2) 

The results for the KdV equation with the I-soliton solution are summarized in 
Table 4.1. The time / 1 real second column represents the time in seconds required 
to evolve the solution and produce the graphical results for 1 second of the real time 
for the partial differential equation. These figures indicate what one expects, realisti- 
cally, to have to pay for in computer time for the complete execution of the computer 
program, The differences in the entries of this column (of all the tables 4.1-4.5) 
represent real differences in computer time. 

Table 4.2 contains corresponding results for N = 60 and in Table 4.3 the results 
for the single value q = 0 are summarized. A comparison of the final column in the 
tables indicates that the maximum error (the difference between computed solution 
and theoretical solution) is considerably smaller for the RLW equation than the KdV 
equation for both N = 40 and N = 60. Also it is noted that the real cost for the RLW 
equation is significantly less. 

In figures 4.3 through 4.10 the actual solutions obtained are graphed for visual 
comparison. 

Figure 4.3 depicts the initial condition where, as in all of the graphical figures, we 
have enlarged the vertical scale to emphasize the existence of any spurious oscillations 
that occur. 

Figure 4.4 depicts the numerical solution at t = 0.3958 of the KdV equation using 
q = 0 for N = 40 grid points. The presence of the downstream oscillations are 
clearly visible. The effect of refining the mesh is apparent in figure 4.5 where the same 
parameters are used, except N = 60. The downstream oscillations are removed at the 
expense of introducing (smaller amplitude) oscillations behind the soliton. However, as 
mentioned above, this improvement is obtained at the cost of considerably increasing 
the time required. The effect of modifying q is shown in figures 4.6 and 4.7. In the 
former q = 20.661 is used and in the latter q = 103.31; for both cases N = 40. There 
is clearly a considerable improvement in these figures over the results depicted in 
figure 4.4. On the basis of the maximum error given in table 4.1 and the graphical 
results given in figures 4.6 and 4.7 there would appear to be little to choose between 
the two values of q. However, on the basis of cost it is apparent (from table 4.1) 
that the larger q has incurred more computer time. 

Figure 4.8 indicates that q = 1.0 (Wahlbin’s scheme) seems not to improve the 
results over the case q = 0.0. However using this value of q = 1.0 and refining the 
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TABLE 4.1 

Figure 9 
Time/l real second 

(seconds) Max. error 

4.4 0 23.5 0.057 
4.6 20.661 14.2 0.059 

4.7 103.31 30.6 0.025 

4.8 1.0 15.7 0.027 

(Legend) KdV equation: single-soliton solution: N = 40 

TABLE 4.2 

Figure 
Time/l real second 

4 (seconds) Max. error 

4.5 0 63.1 0.0153 

4.9 1.0 58.4 0.018 

(Legend) KdV equation: singlesoliton solution: N = 60 

TABLE 4.3 

Figure 
Time/l real second 

4 (seconds) Max. error 

4.10 0 7.6 0.0039 

(Legend) RLW equation: single-soliton solution: N = 40 

TABLE 4.4 

Figure 
Time/l real second 

4 (seconds) 

4.12 0 20.9 

4.13 1 21.5 

(Legend) KdV equation: two-soliton solution: N = 40 
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TABLE 4.5 

Figure 

4.15 

Time/l real second 
4 (seconds) 

0 16.7 

(Legend) RLW equation: two-soliton solution: N = 40 

I 
1 2 3 T 

FIG. 4.1. KdV equation, two soliton solution’s phase. 

Of 
# 

1 2 
3T 

FIG. 4.2. RLW equation two soliton solution’s phase. 

mesh to N = 60 produces much improved results (once again at a much increased 
cost-see table 4.2). 

In computing the solution of the RLW equation with q = 0.0, the results depicted 
in figure 4.10, the absence of oscillations are apparent and the general resolution of 
the initial soliton, moved to the right with preserved amplitude and shape, is good. As 
indicated by table 4.3 the cost is a minimum. 
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FIG. 4.17. T 2.337, RLW, q = 0, N = 40. FIG. 4.18. Initial condition (4.3,4.4, 4.8). 

4.2. Two-Soliton Solutions 

The initial function for the 2-soliton solution was computed from 

f&x) = 3c, sech2(Klx + 4) + 3c, sed?(K,x + d,), (4.3) 

where the following values were chosen: 

and 

Cl = 0.3; c2 = 0.1 (4.4) 

KdV: Ki = f ($)l”; dz = -5, i = 1, 2. (4.5) 

These values coincide with those used by Greig [6]. The numerical results are 
depicted in figures 4.12 for q = 0 at T = 2.42 seconds and figure 4.13 for q = 1 at 
T = 2.377 where N = 40 in both cases. The initial condition (4.3) with the parameters 
given by (4.4) and (4.5) is shown in figure 4.11. The initial profile has been propagated 
to a stage where the larger soliton has passed through the smaller soliton and emerged 
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FIG. 4.19. T = 3.297, RLW, q = 0, N = 40. FIG. 4.20. T = 4.258, RLW, = 0, N = q 40. 

with their positions interchanged. However, the presence of both upstream and 
downstream oscillations for 4 = 0 and q = 1 is clear. The times for these runs are 
summarized in table 4.4. 

For the RLW equation we tried three initial conditions. The first was defined using 
(4.3) with 

1 11/z Kp=T 8 ; 
0 

K2 = Kl ; da = -5; d, = -3 (4.6) 

whose profile is shown in figure 4.14. Using 4 = 0 and N = 40 the solution was 
computed to T = 2.36 and is shown in figure 4.15. The expected resolution of the 
two solitons is seen, without any oscillations. 

The second initial condition was (4.3) with the parameters defined by 

K, = Kl ; dl = -5; d2 = (2)“’ dl (4.7) 

.whose profile is shown in figure 4.16. 
The solution computed at T = 2.337 with q = 0 and N = 40 is shown in figure 4.17. 
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A very small oscillation is present behind the solitons. We assume these could be 
dissipated with a suitable positive 4. 

Finally we ran the initial condition (4.3, 4.4) and chose 

K, = ; (f)“’ (6 = c/c,); di = -5 (4.8) 

This produces exactly the same profile as that used for the KdV equation depicted in 
figure 4.18 and equivalently in figure 4.11. 

Using 4 = 0 and N = 40 the solution at T = 3.297 and later at T = 4.258 are 
shown in figures 4.19 and 4.20 respectively. In this case we perceive an unexpected 
feature. Namely the emergence of a third (very) small amplitude soliton. This appears 
to be a genuine soliton (rather than spurious oscillation) as its emergence causes a 
phase shift on the largest soliton (and perhaps also on the second soliton although on 
the scale used this could not be depicted) as the results of figure 4.2 show. The corre- 
sponding phase diagram of the 2-soliton solution for the KdV equation is given in 
figure 4.1. Abdulloev et al. [l] have also performed computer experiments on a 
modified form of the RLW equation, and likewise note the appearance of a third 
wave subsequent to the interaction of two solitons. Thus, the “inelastic” behaviour of 
the RLW equation receives further confirmation. On the other hand, the finite differ- 
ence schemes of Eilbeck and McGuire [4]) do not appear to reproduce this pheno- 
menon. 

In figure 4.1 both waves emerge from the interaction with the same velocity (and 
amplitude) as existed before the interaction but are shifted in phase by the amounts 
d, = +0.09 and d, = -0.19, respectively. 

In figure 4.2 the two principal waves for the RLW equation do not preserve their 
velocity after the interaction. The phase shifts after the interaction appear to be d, = 
t-O.09 for the larger soliton and d, = -0.05 for the smaller. However, when the 
(very) small soliton emerges the largest wave appears to undergo yet another phase 
shift of di = 0.05. 

5. CONCLUSIONS 

The purpose of this report has been to explore the numerical properties of the KdV 
and RLW equations, using the ordinary as well as a class of dissipative Gale&in 
methods. Although only cubic splines have been used as basis functions, it became 
clear that, in terms of both economy of run-time and accuracy for a given mesh-size, 
the RLW equation may be solved much more efficiently and effectively than the KdV 
equation. (We ascribe this difference to the fact that the RLW equation has only 
second order spatial derivatives whereas the KdV equation has third order spatial 
derivatives.) Hence, if the RLW equation is to be used to describe the shallow water 
wave model, as advocated by Benjamin et al. [2], as opposed to the KdV equation, 
then it appears to be a fact that the Galerkin method treats the RLW equation more 



NON-LINEAR DISPERSIVE WAVES 451 

successfully than the KdV equation. However, the final figures act as a warning. There 
appear to be, for the same initial profile for both KdV and RLW equations, a distinct 
difference in the behaviour of the 2-soliton solutions with increasing time. A compari- 
son with the Finite Difference Method (Greig [6, table 6.21) shows that the Gale&in 
method has the advantages of smaller errors (for the same mesh-size) and of not being 
restricted as to the size of the time step in the ordinary differential equation solver. 
(The only constraint imposed here is by virtue of a preassigned choice of accuracy of 
the solutions-as an alternative, a simple Trapezoidal-like discretization of the ordi- 
nary differential equation system would be interesting.) In contrast the finite difference 
methods of Greig were conditionally stable. For the RLW equation the methods of 
Eilbeck and McGuire are, however, unconditionally stable. 
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